The challenge of unraveling the highly heterogeneous structure of coal and its impact on utilisation has meant that coal science has been at the forefront for understanding complex organic matter.

Acknowledge Biomass & Fossil Fuel Research Alliance (BF2RA) for organising event with sponsorship from:

- the British Coal Utilisation Research Association (BCURA)
- Coal Research Form (CRF),
- IEA Clean Coal Centre
- Royal Society of Chemistry (RSC)
- Energy Sector and the Energy Generation and Supply Knowledge Transfer Network
My career in coal science

Sunderland (1953-71) Durham coalfield

Coal Research Establishment, Stoke Orchard, 1974-87

Univ. of Strathclyde, Glasgow (1987-2000)

Univ. of Leeds (Ph.D, 1977-81)

Univ. of Nottingham, 2000-present
“How the Advanced Structural Characterisation of Coal has Benefitted Utilisation”

Lecture Outline

- The Early years (Coal Research Establishment)
 - **structure of coal** – understand pyrolysis and liquefaction.

- The Middle Years (University of Strathclyde)
 - applying knowledge on coal to other fields – biomass & polymers, oil exploration.
 - **carbonisation**, understanding fluidity development from a fundamental standpoint, impact on coke properties
 - **Pollutants** – Polycyclic aromatic hydrocarbons (PAHs), source apportionment, Hg control

- The Later years (University of Nottingham)
 - **Combustion** – oxyfuel, catalysis
 - **Biomass co-firing**, utilisation
 - CCS

- Does the UK have a future for coal?
 - – technology and the best available young talent.
The North East Coalfield in the 1960s and 70s

- Fathers side of the family, Easington
- Grandfather moved to NE from South Yorkshire in 1880s.
- Great, great grandfather (born 1788) traced to Eckington, North Derbyshire.

“Get Carter” 1972, Horden “Beach”
“You wont get me I’m part if the Union” (Strawbs 1973)

“You’ve got me because my dad is leading militant in the Durham NUM”

- My father was not in part of the Durham Winderman’s Association, a separate entity within the NUM and somewhat less militant.
- Oil price rise – coal liquefaction would meet future needs.
- Chemistry/ Analysis and Basic Studies Sections.
- Bill Ladner, Derek Williams, Geoff Kimber, Terry Martin, Dick James.
My “Scientific Family Tree”

Prof. Keith Bartle, Univ. of Leeds

Dr. Bill Ladner, Coal Research Establishment

Colin Snape

Gordon Love, Stuart Mitchell, Ian Murray, Chris Russell, Will Meredith, Clement Uguna

Hydropyrolysis and catalysis

Rob Law, Miguel Castro Diaz, Gordon Love, John Andresen, Mercedes Maroto-Valer, Shona Martin, Sylvia Kokenya

Solid state NMR
Coal structure and carbonisation

Carole McRae, Cheng-Gong Sun

Pollutants: PAHs

Katie Le Manquais, Salome Farrow, Luke Morris

Combustion, mineral catalysis
Low-severity coal liquefaction products provide detailed insights into coal structure

NCB developed supercritical gas extraction and two-stage hydrogen-donor solvent liquefaction processes, the latter operated at 2 t/d at Point of Ayr.

- **Fuel**, 1979, 58, 413-422 (150 citations) and Ph.D thesis
- Key technique is 13C NMR spectroscopy
- Optimise conditions for quantification

Structural analysis of supercritical-gas extracts of coals

Keith D. Bartle*, William R. Ladner†, Terence G. Martin†, Colin E. Snape† and Derek F. Williams†

*Department of Physical Chemistry, University of Leeds, Leeds LS2 9JT, UK
†National Coal Board, Coal Research Establishment, Stoke Orchard, Cheltenham, Glos. GL52 4RZ, UK
(Received 16 September 1978)

The chemical structure of two extracts prepared by supercritical extraction of low-rank coals with toluene, with and without hydrogen, have been determined using solvent and chromatographic fractionation followed by ultimate analysis, 1H nuclear magnetic resonance (n.m.r.) spectroscopy, molecular weight and OH measurements. 13C n.m.r. and i.r. spectroscopy have been used to obtain confirmatory evidence. The extract obtained in the absence of hydrogen, which amounted to 27% of the coal, was found to contain aromatic structures linked by ring-jointing methane or heterocyclic groups. The hydrogen-assisted extract (47.5 wt % coal) was more condensed and contained more smaller molecules, apparently as a result of the cleavage of heterocyclic groups in the coal. It also incorporated more hydroaromatic substituents. 13C n.m.r. showed that virtually all the non-phenolic oxygen was present as aromatic ether.
The NMR Phenomenon
- slow relaxation of 13C aromatic nuclei, accelerate with a paramagnetic reagent

Behaviour of nuclei with magnetic moments

Manipulate magnetism by applying radiofrequency pulses

Application of quantitative 13C nuclear magnetic resonance spectroscopy to coal-derived materials

William R. Ladner and Colin E. Snape
National Coal Board, Coal Research Establishment, Stock Orchard, Cheltenham, Glos. GL52 4RZ, UK
(Received 16 March 1978)

Detection of magnetisation in time domain and transformation to frequency domain

High yield coal extract structures

High volatile bituminous and low-rank coals contain:

- Small aromatic nuclei.
- Little naphthenic/hydroaromatic aliphatic structure.
- Short alkyl chains.
But, results not entirely consistent with coal models proposed

- These models generally displayed low aromaticities and to compensate for this, high proportions of naphthenic (cyclic) aliphatic structures.
- Only answer was to move from solution state measurements on extracts to solid state 13C measurements on coals and individual macerals.
Quantitative solid state 13C NMR – carbon skeletal parameters to define coal structure model thermal conversion

- **Easy to do badly, but painstaking to do well!**

Cross-polarisation. Fast, but inevitably non-quantitative – not all C observed, discriminates against aromatic C.

Single pulse excitation, slow and less sensitive, but quantitative – all the C observed.

- Proven for coal then applied to all insoluble organic matter – polymers, petroleum source rocks, catalytic cokes (FCC), semi-cokes.
- SPE - higher aromaticities and more non-protonated aromatic C.

SPE 13C NMR gives accurate aromaticities for coals

Energy & Fuels 1992, 6, 598–602

Single-Pulse Excitation 13C NMR Measurements on the Argonne Premium Coal Samples

J. A. Franz,* † R. Garcia, † J. C. Linehan, † G. D. Love, † and C. E. Snape* †

Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral St., Glasgow G1 1XL, UK, and Pacific Northwest Laboratory of the U.S. Department of Energy P.O. Box 999, Richland, Washington 99352

Received February 19, 1992. Revised Manuscript Received May 27, 1992

In view of the results of this study and the well-documented inherent problems with cross-polarization (CP) 13C NMR concerning quantification for coals, it is now clear that the more time-consuming single-pulse excitation (SPE) or Bloch decay measurements are essential for obtaining aromaticities and other carbon skeletal parameters for coals. SPE 13C NMR has been carried out on the Argonne Premium Coal Samples at both a low and a high field strength (25 and 75 MHz, respectively), high-speed magic angle spinning (13 kHz) being used to suppress spinning sidebands at the higher field. Aromaticity values measured by SPE at low and high field were generally in excellent agreement and were consistently higher than those from CP, the greatest differences being found for the two low-rank coals in the Argonne suite. The use of tetrakis(trimethylsilyl)silane as an internal standard in the low-field measurements indicated that, in general, over 75% of the carbon in the coals is typically observed by SPE.
Two groups, different field strengths – nearly perfect agreement

<table>
<thead>
<tr>
<th>Table II. Aromaticity Values Derived from SPE Spectra of the Argonne Coals</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample</td>
</tr>
<tr>
<td>North Dakota lignite</td>
</tr>
<tr>
<td>Wyodak subbit.</td>
</tr>
<tr>
<td>Illinois No. 6</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pittsburgh No. 8</td>
</tr>
<tr>
<td>Blind Canyon</td>
</tr>
<tr>
<td>Lewis-Stockton</td>
</tr>
<tr>
<td>Upper Freeport</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pocahontas</td>
</tr>
</tbody>
</table>

\(^{a} \) Initial samples. \(^{b} = 100 \text{ s delay.}^{c} \) After demineralization. \(^{d} \) This study; \(\pm 5\% \).

Figure 1. 25-MHz SPE spectra of (top to bottom) (a) Wyodak, (b) Upper Freeport, and (c) Pocahontas coals.

Figure 2. 75-MHz SPE spectra of (a, top) Wyodak, (b, middle) Upper Freeport, and (c, bottom) Pocahontas coals.
Accurate structural parameters and variations about the mean – medium volatile bituminous coal

- Vitrite and semi-fusinite both show significant variations in aromatic structure.
- Semi-fusinite much larger aromatic structures.
Hydropyrolysis – historical perspective
“from sledgehammer to controlled bond scission”

- **1950-70s** Direct coal hydrogenation to BTX and SNG - 800°C and 300 bar pressure, ultra high-severity.
- **Late 1980s** Lower pressures with catalysts, higher liquid yields with lower gas yields
- **1990s** Gordon Love, Stuart Mitchell, first analytical hyppy PhDs
 Organic S groups, quantification from H₂S release profiles

Hydropyrolysis oil yields by kerogen type

- Conversions > 90% TOC for Type I and II kerogens, only inertinite remains for high volatile bituminous coals (type III kerogens).

- Optimal pressure for all applications is 150 bar

Hydropyrolysis – a versatile analytical pyrolysis technique

- Applications include:
 - quantifying **black or pyrolytic carbon** in environmental matrices
 - understanding the earliest life forms from severely altered organic material
 - fingerprinting biodegraded oils and over mature petroleum source rocks.
- The Engineer 2008 award winner for collaboration with Strata Technology.
- 7 systems including Petrochina, Curtin and James Cook Universities.

Hydropyrolysis Commercialisation (Will Meredith)

- Licensing agreement got the system designed, built (and sold)
- Collaborative approach recognised at the Technology and Innovation Awards 2008

- University of Nottingham
- University of California (Los Angeles)
- PetroChina (Beijing)
- Curtin University (Perth)
- James Cook University (Cairns)
- Chinese Academy of Science (Guangzhou)
- University of Gottingen
- Cornell University (New York State)
Hydrogen Rich (Perhydrous) Coals – ideal candidates for liquefaction (David Large and Chris Marshall)
Central Tertiary Basin in the Archipeligo of Svalbard

Palaeocene Stratigraphy (ca. 60 Ma)

- 5 Seams found within the Mid-Palaeocene Todalen Member.
- Lowest Svea Seam is less oil prone
- 4 seams are oil prone named (oldest-youngest)
 - Todalen
 - Longyear
 - Svarteper
 - Askeladden
- Total resource size up to 61 million tonnes (SNSK). Longyear only seam mined
- Seams characterised by variable sulfur contents.
Depositional Estuarine Setting

- Estuarine setting - with peatland forming between channels
- Marine Influence – supply of S and alkalinity decreases away from the channels

Key
- Longyear seam outline at Lunckefjellet mountain

Sand Flat
Mouth Bar
Meso-tidal Estuary
Peatland (Fen)

5km
Longyear free and bound bacterial hopane distributions are synergistic – bitumen has not migrated into the coal!

Free phase
- $C_{30} \beta\alpha/\alpha\beta = 0.11$
- $C_{31} \alpha\beta S/S+R = 0.64$

Asphaltene bound phase (hypy released)
- $C_{30} \beta\alpha/\alpha\beta = 0.47$
- $C_{31} \alpha\beta S/S+R = 0.57$

Residue bound phase (hypy released)
- $C_{30} \beta\alpha/\alpha\beta = 0.43$
- $C_{31} \alpha\beta S/S+R = 0.58$
Aromaticity indicates that the Longyear seam contains significant amounts of aliphatic (bacterial, microbial) non coaly material.

- This causes reduced of the vitrinite reflectance.
- The Svea seam which is not oil prone exhibits an aromaticity consistent with the observed maturity.
- Taking a normal bituminous coal (Svea) to be 75 parts aromatic and 25 parts aliphatic carbon, this requires another 50 parts of aliphatic carbon from microbial input to give an aromaticity of 0.5.
Coal carbonisation
(Ron Willmers, Ruth Poultney & Colin Atkinson – B. Steel, Corus, Tata)

- After decades of investigation, uncertainty still surrounds a number of key phenomenon – coal blending, oven wall pressure,
- Empirical tests to gauge softening but do not easily relate to e.g. Gieseler fluidity.
- Define softening from a structural standpoint and so much more will be understood regarding coke making.
Deconvoluted Broadline 1H NMR spectra at maximum fluidity – 450°C
Coal gives an inert component - broad Gaussian peak and a narrower Lorentzian peak from mobile (softened) material.

Jaeger coal
Fluid H = 73 %
$T_{2L} = 103$ ms
Viscosity = 6.2×10^3 Pa.s

Jaeger (80%) + Charcoal (20%)
Fluid H = 51 %
$T_{2L} = 91$ ms
Viscosity = 8.8×10^4 Pa.s
Charcoal addition reduces fluid phase and shortens T_{2L}
Some well-known (qualitative) facts about carbonisation

Quantification by in-situ 1H NMR
- Mild air oxidation is detrimental
- Fluidity generation is reversible with rapid heating.
- Pitch additives enhance fluidity.
- Semi-fusinite is reactive, contributes to fluidity.
- Biomass generally suppresses fluidity.

Other debatable points answered
- Influence of particle size? Reduces T_2 not % fluid H.
- How much fluid phase is derived from pyridine extractables? ca. 50%.

High-torque, high-temperature SAOS rheometry

- High temperature rheometry monitors the changes in the viscoelastic properties of coal with temperature to quantify the development of fluidity in the sample mass → monitors macroscopic phenomena.

Expansion Collapse & Resolidification

Coal disc Serrated parallel plates (25 mm Ø)

Transducer Motor

High temperature rheometry monitors the changes in the viscoelastic properties of coal with temperature to quantify the development of fluidity in the sample mass → monitors macroscopic phenomena.
- Exponential relationship occurs for all the coals studied.
- Position of curve (horizontal shift) depends largely on how much rigid H is present as inert solid, and how much is resolidified material (have different intrinsic viscosities).

Addition of torrefied biomass

Torrefied Miscanthus (250° C for 1 hour in N₂)

Follows polymer blending rule when $\phi_{CR} \gg \phi_{TM}$:

$$\eta^* = A \exp(B \phi_{CR})$$

$$\ln(\eta^*) = \ln A + B \phi_{CR}$$

$$\ln(\eta^*) = \phi_{TM} \ln \eta^*_{TM} + \phi_{CR} \ln \eta^*_{CR}$$
Faster heating enables more biomass to be incorporated into coking blends (RFCS Densicharge project – Tata Steel)

- Log complex viscosity increases linearly with biomass addition.
- Biomass fluidity arises predominately from lignin.
- Faster heating reduces time lag between fluidity development from biomass and coal.

Compounds of biological origin are always enriched in the lighter 12C isotope as opposed to the heavier 13C.

Fossil fuels, i.e. coal, petroleum and natural gas, are often isotopically distinguishable:

- **Crude oil:** mainly δ^{13}C ($\%$, PDB): $-27 \sim -28\%$; δ D ($\%$, SMOW): $-90 \sim -180$

- **Coal:** δ^{13}C ($\%$, PDB): $-23 \sim -25\%$; δ D ($\%$, SMOW): $-60 \sim -120$

- **Natural gas (CH$_4$):** δ^{13}C ($\%$, PDB): $-55 \sim -110\%$; δ D ($\%$, SMOW): $-170 \sim -400$

Ubiquitous compounds from different sources may exhibit varying isotopic compositions relative to each source.
Selected carbon isotopic ratios for PAHs obtained from a human lung, tobacco smoke, coal tars and wood burning (Tony Fallick, Chenggong Sun and Carole McRae)

2. C. McRae, C-G Sun, C.E. Snape and A.E. Fallick, δ^{13}C values of coal-derived PAHs from different processes and their application to source apportionment, *Organic Geochem.*, 1999, **30**, 881-889.
Glasgow Green Site

- Illegal tar dumping – either from gas works or coking plant in a former air swimming pool.
- Close match to high T coal tar in PAH distribution and isotopic ratios (-25 ‰).
Low temperature carbonisation plant, Bolsover, North Derbyshire

The emissions from this low temperature carbonisation plant considered to be the major cause for the environmental PAHs in the area. However, high prominence of unsubstituted PAHs makes apportionment difficult.

GC profiles of aromatics from vegetation and soil samples

Generally, little resemblance to low T coal tar

- However, many isotopic values in range -24 to -26 ‰.
- Parent PAH present – may suggest another source, e.g. high T carbonisation?
- High MM PAH exhibit isotopically lighter signatures (< -28 ‰) suggesting transport fuel/biomass contribution.

GC profiles of neutral aromatics from weathered and initial low temperature coal tar

Alkyl substituted PAHs degrade faster than parent PAHs over short periods, but carbon stable isotopic values remain constant close to −25 permil.
A soil sample close to the low temperature carbonisation plant

- The inconsistency between the molecular and isotopic profiles for free and bound PAHs indicate a multiplicity of the input sources:
- oil and/or traffic related emissions, and mixed input of low temperature coal tar.
- However, the prominent free parent PAHs appear again to occur mainly from degradation of low T coal tar.

δ¹³C isotopic values for parent PAHs

<table>
<thead>
<tr>
<th>Name and No of PAHs</th>
<th>Free aromatics</th>
<th>Bound aromatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Flurene</td>
<td>-23.2</td>
<td>-23.6</td>
</tr>
<tr>
<td>5. Phen</td>
<td>-23.3</td>
<td>-23.7</td>
</tr>
<tr>
<td>6. Anthr</td>
<td>-23.3</td>
<td>-23.7</td>
</tr>
<tr>
<td>7. Fluoranth</td>
<td>-23.4</td>
<td>-26.3</td>
</tr>
<tr>
<td>8. Py</td>
<td>-23.8</td>
<td>-25.6</td>
</tr>
<tr>
<td>11. B (b)fluoranth</td>
<td>-24.6</td>
<td>-27.3</td>
</tr>
<tr>
<td>12. B(k)fluoranth</td>
<td>-24.6</td>
<td>-27.3</td>
</tr>
<tr>
<td>13. B(a)py</td>
<td>-24.3</td>
<td>-26.0</td>
</tr>
<tr>
<td>14. Ind(cd)py</td>
<td>-24.3</td>
<td>-26.1</td>
</tr>
<tr>
<td>15. Dib (a,h)anthr</td>
<td>-24.3</td>
<td>-26.1</td>
</tr>
<tr>
<td>16. B(ghi)peryl</td>
<td>-24.3</td>
<td>-26.1</td>
</tr>
</tbody>
</table>
Xuan Wei lung cancer epidemic

- Highest lung cancer mortality in the world
- Lead a new multidisciplinary approach to this problem
- Coal unusually enriched in silica
- Mortality correlates with the interaction of silica and volatiles
- Resulting Environmental Science and Technology paper received global media coverage.

Oxyfuel 1 MW Burner Testing

Flame structure and shape were found to be similar for Air and Oxyfuel firing operation but need oxygen levels of 30-35%.
Drop-tube furnace test (DTF) programme

- DTF tests under conditions of different temperatures (up to 1500°C), residence times (down to 50 ms) and combustion atmospheres simulating typical oxy-combustion operations.
 - Devolatilisation
 - Large batches of char production
 - Char re-firing tests

- TGA and other characterisation (BET, SEM/EDAX etc.) of the chars.
Oxyfuel and normal combustion using a drop tube furnace

Oxy-fuel conditions give higher yields of total volatiles (5 ~ 20 wt%), attributable to the contribution of the CO₂/char reaction for a number of coals.

Increases in BET surface area arise at 1300°C due to char activation in CO₂.
The contribution of CO$_2$ gasification reactions was evident for all 3 coals investigated.

Effect of steam (30%) is larger than CO$_2$, giving rise to even higher volatile yields with increasing residence times.
Biomass handling and quality

- Biomass degrades quite quickly on storage.
- Tilbury to closes following fire in 600 tonne feed hoppers.
- Slagging and fouling due to more alkali/alkaline metals in ash.

- 15 weeks in storage
- Fungal growth but also structural damage and stickiness
TGA co-combustion of sawdust and coal chars showing synergistic effect

Novel Adsorbents for CO₂ Capture

- Pre and post-combustion capture application (£3M programme).
- One of best performing materials in independent worldwide study ADA-ES (US-DOE DE-NT0005649)
- Novel regeneration techniques and mechanisms published
- Leading large R&D activity to develop and scale-up technology

Ultra high capacity co-precipitated MnO$_2$ sorbents for Hg capture (Janos Lakatos)

- Oxidative capture, high mesoporous surface area.
- Capacity achieved for bed packed by sorbent at 50°C and a N$_2$ flow of 130 ml/min.
- Patents awarded
Proven Global Coal, Oil and Gas Reserves are Increasing

Coal

Oil

Natural Gas

Source: Global Energy, World Energy Council

Distribution of proved reserves in 1999, 2006 and 2010

Percentage

Proven Reserves

Europe & Eurasia
North America
North Africa
South America
South-East Asia

Proven Reserves

Europe & Eurasia
North America
North Africa
South America
South-East Asia

Proven Reserves

Europe & Eurasia
North America
North Africa
South America
South-East Asia
UK Future for Coal

• Electricity Q2 2013

<table>
<thead>
<tr>
<th>2013 Q2</th>
<th>Percentage change on a year earlier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal production</td>
<td>3,572</td>
</tr>
<tr>
<td>Coal imports</td>
<td>12,688</td>
</tr>
<tr>
<td>Coal demand</td>
<td>13,507</td>
</tr>
<tr>
<td>- Power stations</td>
<td>10,093</td>
</tr>
<tr>
<td>- Coke ovens & blast furnaces</td>
<td>1,604</td>
</tr>
<tr>
<td>- Final users</td>
<td>663</td>
</tr>
</tbody>
</table>
The UK Future for Coal – technology and the best young talent

- Globally, watch China – lead the way with CCSU during the 2020s
- CCS demonstrated and commercialised, a given for any new coal power generation
- CCS – cement, iron & steel including renewable coke
- Which technology is best?
 - Gasification – deal with intermittent renewable, gas distribution and storage
 - Energy security, forget shale gas and look at 4 billion tonnes of coal reserves ideally situated for underground coal gasification.
- Future talent, overcoming the generation gap.
Trend is to deeper UCG and oxygen blown

Technology Trends for UCG

- Shallow Coal – air blown
 Thermal plant, power gen,

- Shallow Depth
 Enriched air, O2
 For GTL

- Medium Depth
 Enriched air, O2
 For GTL, Fertilisers

- Deep Coal, O2
 UCG CCS
UK Coal Reserves and UCG Licenses

- Five Quarters, Northumberland
- Clean Coal licences include Sunderland
EPSRC Engineering Doctorate Centre
Efficient Power from Fossil Energy and Carbon Capture Technologies

The EngD Centre is essential to producing the highly trained personnel for implementing cleaner fossil energy technologies with CCS.

- Highlighted in the recent RCUK Energy review as being “world class”.
- International summer schools – India and China
- Ningbo campus has set up a similar centre.
EngD Centre: First Four Cohorts

2009

2010

2011

2012
Positive legacy of mining
What else could I have done....

Wearmouth Colliery, 1992 Stadium of Light 1997

- I’ve been around longer (1995). First Harry Potter novel, 1997 (The Philosopher’s Stone)
- I’ve only broken large molecules down into smaller ones.
Acknowledgements

- Funding – Research Councils -EPSRC/NERC, European Union - RFCS/ECSC, Dti (UK Government), BCURA/BF2RA and industry.
 - Worked on first ECSC project, 1975

- Nottingham colleagues
 - John Patrick, Ha Liu, Carol Eastwick, Trevor Drage, Chenggong Sun, David Large,
 - Miguel Castro Diaz, Salome Farrow, Will Meredith, Clement Uguna

- Former colleagues and PhD students

- Current PhDs/EngDs

- Family - Anne, researching the Snape family tree.